
CS106A Handout 18

Winter 2013-2014 February 3, 2014

Practice Midterm Exam

This handout is intended to give you practice solving problems that are comparable in format and
difficulty to those which will appear on the midterm examination.

Exam is open book, open notes, closed computer

The examination is open-book (specifically the course textbook The Art and Science of Java and
the Karel the Robot coursereader) and you may make use of any handouts, course notes/slides,
printouts of your programs or other notes you've taken in the class. You may not, however, use a
computer of any kind (e.g., you cannot use laptops on the exam).

Coverage
The midterm exam covers the material presented in class up to and including string processing,
which we should finish by Friday, February 7, which means that you are responsible for the
Karel material plus Chapters 1-6, 8, 9, and the use of mouse listeners from Chapter 10 (sections
10.1-10.4) from The Art and Science of Java.

General instructions
Answer each of the questions included in the exam. Write all of your answers directly on the
examination paper, including any work that you wish to be considered for partial credit.

Each question is marked with the number of points assigned to that problem.

In all questions, you may include methods or definitions that have been developed in the course,
either by writing the import line for the appropriate package or by giving the name of the
method and the handout number, chapter number, or lecture in which that definition appears.

Unless otherwise indicated as part of the instructions for a specific problem, comments will not
be required on the exam. Uncommented code that gets the job done will be sufficient for full
credit on the problem. On the other hand, comments may help you to get partial credit if they
help us determine what you were trying to do.

Blank pages for solutions omitted in practice exam
In an effort to save trees, the blank pages that would be provided in a regular exam for writing
your solutions have been omitted from this practice exam.

Good Luck!

2 / 9

Problem 1: Karel is Lost! (24 Points)

Karel the Robot has gotten lost in an empty room – can you help guide him out safely?

In this problem, Karel's world consists of a single room, a rectangle with exactly one wall removed as
the exit. Immediately outside the exit of the room is a single beeper. Karel is guaranteed to start some-
where within the room, but other than that Karel's initial position and orientation are unknown. Your
job is to guide Karel out of the room and safely onto the exit beeper.

For example, here is one possible starting world for Karel, along with the desired result:

You should assume the following:

• The dimensions of the room Karel starts in are completely arbitrary.

• The door can be in any of the four walls of the room and anywhere along a wall.

• Karel's position and initial heading within the room are completely arbitrary.

• The only beeper in the world is the one beeper immediately outside the door.

• Karel's final heading does not matter.

• There will always be at least one row or column of space outside each wall of the room, though
there may be more.

You are limited to the instructions in the Karel booklet. For example, the only variables allowed
are loop control variables used within the control section of a for loop, and you must not use the
break or return statements. You may, however, use the &&, ||, and ! operators in the conditions of
if statements or while loops. You do not need to worry about efficiency.

..

..

..

..

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

1 2 3 4 5 6

1

2

3

4

5

6

7

..

..

..

..

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

1 2 3 4 5 6

1

2

3

4

5

6

7

3 / 9

Problem Two: Jumbled Java hiJinks (20 Points Total)

(i) Expression Tracing (6 Points)

Compute the value of each of the following Java expressions. If an error occurs during any of these
evaluations, write “Error” on that line and explain briefly why the error occurs.

1 – 2 – 3 - 4

(13 / 7) / (7 / 13)

1 == 2 || 2 / 0 == 3

"1" + (1 + 1) + 1 + 1 + "1"

4 / 9

(ii) Program Tracing (14 Points)

The following program is complex and exists solely to test your understanding of parameter passing.
What does it print out?

import acm.program.*;

public class AbrahamJava extends ConsoleProgram {

public void run() {

int abraham = 12;

int maryTodd = 56;

 thirteenthAmendment(maryTodd, abraham);

println("abraham = " + abraham);

println("maryTodd = " + maryTodd);

}

private int thirteenthAmendment(int abraham, int maryTodd) {

int robert = abraham % 10 + maryTodd / 10;

println("robert = " + robert);

println("abraham = " + abraham);

edwinStanton(robert, abraham + maryTodd);

edwinStanton(robert, abraham + maryTodd);

abraham = thaddeusStevens(maryTodd, robert);

println("abraham = " + abraham);

return abraham;

}

private void edwinStanton(int maryTodd, int abraham) {

maryTodd = abraham – maryTodd;

println("maryTodd = " + maryTodd);

}

private int thaddeusStevens(int maryTodd, int abraham) {

println("maryTodd = " + maryTodd);

return abraham;

}

}

Write the output of this program in the box below:

5 / 9

Problem Three: Nim (32 Points)

Nim is a game played by two players. The game begins with two piles of stones that are shared by the
two players. Players alternate taking turns removing any nonzero number of stones from any single pile
of their choice. If at the start of a player's turn both of the piles are empty, that player wins the game.

Your job is to write a Java program that lets two players play a game of Nim. When the game starts,
your program should pick a random number of stones to put into each pile (ranging from the constant
MIN_STONES to the constant MAX_STONES). Your program should then let the two players alternate
turns, where on each turn the player will choose which pile to pick from (either Pile 1 or Pile 2), then
choose a number of stones to remove from that pile. At the start of each turn, you should print out a
message noting whose turn it is and how many stones are left in each pile. For example:

Player 1's turn.

Pile 1: 7 stone(s) Pile 2: 5 stone(s)

At the end of the game, you should report who won the game with a message like this one:

Player 2 wins!

A sample run of this program, in which the first
player wins, is shown to the right.

Your program needs to be able to handle invalid
user input correctly. If a player wants to choose a
pile other than Pile 1 or Pile 2, or tries to choose a
pile containing no stones, or tries to remove an in-
valid number of stones from a pile (zero stones, or a
negative number of stones, or more stones than are
in the pile), then your program should display a
message indicating that the player has made an in-
valid choice and then ask the user to make a differ-
ent choice. You should continuously ask the player
for a valid input until the player provides it.

6 / 9

Problem Four: Picture Panel Programs (22 Points)

A picture panel program is a program in which an image is hidden behind a grid of rectangular blocks.
The user can then remove the blocks to reveal more and more of the hidden image.

For example, suppose that the hidden image is this adorable picture of a puppy:

When the program starts up, the puppy is hidden behind a 4 × 4 grid of blocks:

The user can then click on the blocks to reveal more and more of the picture. For example, after click-
ing on the bottom-right block, that block is removed to reveal a part of the picture:

7 / 9

After clicking many more blocks, the majority of the picture is revealed:

Your job in this assignment is to implement a picture panel program. You can assume the following:

• The name of the file containing the image to hide is given by the constant IMAGE_FILENAME.

• The image will fit perfectly within the application window; you do not need to resize the image
or set the size of the window.

In implementing your solution, you should adhere to the following:

• There are exactly four rows and four columns of blocks.

• Each block should use Color.WHITE for its border and Color.GRAY for its interior.

• The blocks should be sized so that they completely cover the window. You are not guaranteed
that the width and the height of the window are the same.

As a reminder, you can use the GImage subclass of GObject to represent images.

8 / 9

Problem Five: Damaged DNA Diagnoses (22 Points)

DNA molecules consist of two paired strands of nucleotides, molecules which encode genetic informa-
tion. Computational biologists typically represent each DNA strand as a string made from four differ-
ent letters – A, C, T, and G – each of which represents one of the four possible nucleotides.

The two paired strands in a DNA molecule are not arbitrary. In normal DNA, the two strands always
have the same length, and each nucleotide (letter) from one strand is paired with a corresponding nu-
cleotide (latter) from the second strand. In normal DNA strands, the letters are paired as follows:

A is paired with T and vice-versa.

C is paired with G and vice-versa.

Below are two matching DNA strands. Note how the letters are paired up according to the above rules:

GCATGGATTAATATGAGACGACTAATAGGATAGTTACAACCCTTACGTCACCGCCTTGA
↕↕↕
CGTACCTAATTATACTCTGCTGATTATCCTATCAATGTTGGGAATGCAGTGGCGGAACT

In some cases, errors occur within DNA molecules. This problem considers two types of DNA errors:

• Point mutations, in which a letter from one strand is matched against the wrong letter in the
other strand. For example, A might accidentally pair with C, or G might pair with G.

• Unmatched nucleotides, in which a letter from one strand is not matched with a letter from the
other. We represent this by pairing a letter from one strand with the – character in the other.

For example, consider these two DNA strands:

GGGA-GAATCTCTGGACT

CCCTACTTA-AGACCGGT

Here, there are two unmatched nucleotides (represented by one DNA strand containing a dash character
instead of a letter) and two point mutations (A paired with G and T paired with T).

Although both of these types of errors are problematic, we will consider point mutations to be a less
“costly” error than an unmatched nucleotide. Let's assign a point mutation (a letter matched with the
wrong letter) a cost of 1 and an unmatched nucleotide (a letter matched with a dash) a cost of 2.

Your job is to write a method

private int costOfDNAErrorsIn(String one, String two)

that accepts as input two strings representing DNA strands, then returns the total cost of all of the errors
in those two strands. You may assume the following:

• The two strings have the same length.

• Each string consists purely of the characters A, C, T, G, and – (the dash character). All letters
will be upper-case.

• A – character in one string is never paired with a – character in the other.

9 / 9

Here are some example inputs to the method, along with the expected result. For simplicity, all errors
have been highlighted in bold:

Strands Result

ACGT
TGCA

0
(No errors)

A-C-G-T-ACGT
TTGGCCAATGCA

8
(Four unmatched nucleotides)

AAAAAAAA
TTTATTTT

1
(One point mutation)

GATTACA
CTATT-T

3
(One point mutation, one unmatched nucleotide)

CAT-TAG-ACT
GTATATCCAAA

6
(Two point mutations, two unmatched nucleotides)

ACGTACGT

16
(Eight unmatched nucleotides)

TAATAA
ATTATT

0
(No errors)

GGGA-GAATATCTGGACT
CCCTACTTA-AGACCGGT

6
(Two point mutations, two unmatched nucleotides)

private int costOfDNAErrorsIn(String one, String two) {

